
Tutor for learning based on multiple choice questions

Pedro Reganha
pedro.reganha@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2020

Abstract

Education is in constant evolution. Lectured content has been changing throughout the years as well as the
techniques and tools to deliver them. Quizzes Tutor is a solution to serve both the teachers and the students using
multiple-choice questions.

To support teachers with the challenge that is teaching programming Quizzes Tutor platform was extended to
encompass code type questions, adding to the existing multiple-choice ones.

This work starts by analysing and understanding other solutions that perform programming code question
and answer analysis, especially those that do it in a quiz-like scenario. With that in mind, looks into the existing
platform to solve the two major problems: code restructures to allow multiple question types and adding the new
code question. This paper describes the steps taken, and the thought process involved in the construction of
this extension. It also presents a performance analysis of the new solution, comparing it with the previous one,
finalising with an evaluation of the effort of adding a novel question type to the new solution.

The work developed allowed for a better code structure with elasticity in mind making it easier for future devel-
opers to improve upon this solution or add new code questions for new use cases.
Keywords: Programming; Learning; Teaching; Quizzes

1. Introduction

Every student has a different rhythm, difficulties and
goals. Education needs to grow to be tailor-made for
each one of the students. These do not apply only
to the university level but focusing on it we see that
many students are not ready for the hardship that is to
come on what will most likely be of the last couple of
years studying formally. Here the role of the teacher
is, of course, to expose a given subject but also guide
the next minds of our generation. A problem we see
is like stated before different students exhibit different
learning velocities.

E-Learning came to transform the way content can
be delivered, making use of the evolving network tech-
nology to deliver such contents. E-Learning is, by def-
inition, the usage of electronic technologies to create
learning experiences [1]. E-Learning can take many
forms, depending on the goal or subject, we can have
multiple tools working together.

Both Bodzin and Cates [2] and Santally and Raverdy
[3] noted that in comparison to the ”traditional” ap-
proach, e-learning could take contents to the next level.
It is providing their learners with more materials and
different ways to look at the same topics, promoting
learners with increased learning effectiveness. Having
an online tool where they can train, learn and put them-
selves to the test is essential nowadays. This tool can
have different difficulty levels, needs to be easily ex-
tended, even one simple problem could be for instance
parametrised so that it is actually many more exercises
than just one.

Introducing Quizzes Tutor (QT) [4, 5] a quizzing
and assessment tool that allows teachers to create a
multiple-choice question question bank and then use it
in multiple assessment and quizzes. Its development
started as an effort of project IMPRESS1, being like so
a custom-made tool that would fill the necessities of a
project but always ready to reach other teachers and
classroom needs. However it did not die here and con-
tinues to be improved upon.

QT is a multiple-choice only platform. The accep-
tance of the tool started growing amongst the students.
This lead to a demand for incorporating code ques-
tions so that the students could use to challenge them-
selves. Creating there a place for them to practice
and learn and eventually even be graded, removing,
for instance, the need for the classic exams where the
student would write code on paper. Multiple solutions
were already posed to this problem of having an in-
class tool for automatic assessment of programming
code. However, as stated in a review of these systems
[6], they are created with a limited scope or lifespan,
as for each new thesis or course. Also, new tools tend
to be created to fill the needs or prove a point, which
ends up being discontinued.

QT aims to be a tool that can provide an enormous
scope, with the capability of encompassing multiple
use cases. This work will be adding the possibility
of adding new types of questions, particularly some
programming code question. QT is built considering
best practices and using development methodologies

1https://impress-project.eu/

1



like Domain Driven Design (DDD)[7]. Adding to this is
also focusing its eyes on modern technologies: Docker,
Git, VUE.js with Typescript, among others. That being
said, this makes it a tool for learning even more po-
tent that the quiz platform that it is. Students will also
be challenged to contribute and develop on top of this
software, having the source code of the tool serving
as a base for teaching and knowledge sharing in spe-
cific courses. This challenge is advantageous on two
different notes. Firstly, it is making them work on a
full-fledged application to better exercise their ability to
work in larger applications. Secondly, it will keep the
project alive and counteract the projects that exist only
to fill one specific use case or a specific course that
eventually end up dying.

2. Background
QT is a web application for the creation and manage-
ment of quizzes. It aims to be a tool that students can
use to answer both teacher-created quizzes as well as
auto-generated quizzes from a poll of questions cre-
ated by their teachers. It takes both the role of knowl-
edge validation by the teachers as well as a useful self-
assessment tool that students can use to improve their
learning. QT is built in a 3-layered architecture:

• Presentation Layer

– Responsible for displaying information to the
user.

– Technologies used: Vue.js2 + Typescript3;
Cypress4 for unit and integration tests.

• Business Layer

– Responsible for all business logic.
– Exposes API to access resources.
– Service layer to define a facade on top of the

domain layer.
– Domain layer for business logic implementa-

tion and database interactions.
– Access and permission management.
– Technologies used: Java 11 + Spring-boot;

Groovy for unit and integration tests.

• Data Layer

– Responsible for persisting information.
– Technologies used: PostgreSQL

3. Requirements
The major challenge that initiated the current work was
the creation of programming code questions. The idea
was that somehow we could replicate some of the most
seen questions on exams and that they could be some-
how transformed into a quiz question.

By analysing a set of exams, it was noted that two
question types were frequent and relatively simple to
be adapted into a quiz question format. The first one
consists of giving a snippet of code and finding the
”bug” or the incorrect parts, indicating the line(s) and
fixing it. The second question type focused more on

2https://vuejs.org/
3https://www.typescriptlang.org/
4https://www.cypress.io/

completing the code; this is, given a snippet of code
the student needed to implement the remaining parts
to make it work. This analysis was an interesting result
because it would be much simpler to do any of these
then to do something like a code interpreter, and even if
we where to do that, it would be less relevant or engag-
ing in a quizzing scenario. Nevertheless, this scenario
is still interesting for the platform.

However, before starting to understand what kind of
data was required, or what would be required to make
the programming questions work, one thing became
clear: the QT code needed to be restructured. The
QT application was, as affirmed earlier, very limited in
the fact that only supported multiple-choice questions.
One possible workaround would have been to try to
use the existing questions as a means to ask the code
questions, but this would be counter-intuitive, both for
the student when answering and for the teacher when
creating. Creating a ”question type” would be very rel-
evant for the platform to grow for other requirements.
So it was required to a domain transformation to ac-
commodate the question types.

After understanding the domain problem, the pro-
gramming code question type requirements had to be
clear—there where 3 points of view to consider.

• The teacher standpoint - they require a way to
easily manage questions and quizzes, similarly to
what they had before. Another important point
is the evaluation of the question. It currently
presents a grid with the key selected for each an-
swer, which will not suffice for more complex ques-
tions.

• The student standpoint - they needed to have a
swimmingly integration with the existing questions
and quizzes. Also, the answering of the new code
questions needed to be intuitive.

• The developer standpoint - the system should not
suffer from performance issues after these new
changes. New questions should be simple to add
with a low effort.

Summing it up the requirements became clearer and
more refined as the project kept being developed but
they summed up to:

• Easy to create code questions.
• Easy to answer code questions.
• Easy to evaluate code questions.
• Seamless integration of code questions with other

types of questions.
• Flexible architecture that results in a low develop-

ment cost of adding new types of question.
• Preserve previous performance levels.

4. Multiple Question Types
The first requirement to accomplish was to allow the
existence of multiple question types. As explained be-
fore, the system was created with a simple architec-
ture and design to accommodate multiple-choice ques-
tions, with four options on which one was the cor-
rect. Some of these constraints were only code-based.

2



However, allowing multiple question types is a domain
problem where an evaluation is required to understand
the best approach.

We can identify two main focus areas when think-
ing about this migration/transformation of our domain:
questions and question answers. These are the main
ones that will be affected by the existence of multiple
question types. For example, quizzes use questions
the same happens for quiz answers. This means that
they continue to work independently of the question
type.

The question part of our domain is responsible for
holding all the question information needed to man-
age and have the quizzes’ questions. Parallelly to the
Question concept we have the Question Answer. It is
responsible for the tracking of the students’ answers
to questions. These two concepts are coextending, so
for each question, there will be a complementary field
in the answers, and this will be even more noticeable
with multiple question types. For example, a question
has options to choose from, so the question solutions
must have an option associated with each answer.

We can classify fields to understand if they should be
shared across all question types or specific for a given
question type. This classification is an important analy-
sis. It helps understand the domain and where we can
draw a line regarding what should be question-specific
or question-common fields and properties. Decompos-
ing the domain of the question and answer questions,
we can see the following relevant fields, fig. 1(a) and
fig. 1(b) highlights them:

• Management Fields - fields that hold the purpose
of holding question metadata (e.g. creationDate
- date of question creation);

• Common Fields - fields that are relevant for a
question, however, all question types can have
them (e.g. content - actual question text or
timeTaken - time spent on answering the ques-
tion);

• Specific Fields - fields that are only relevant for
a given question type (e.g. options - option an-
swers, for open-ended questions this would be ir-
relevant).

(a) Question domain model (b) Question answer
domain model

Figure 1: Question and Question Answer domain model, highlight-
ing specific fields

Considering these findings and the fields’ separa-
tion, it becomes more evident the approach required
to modify the domain. It was attempted to perform this
transformation recurring to inheritance as a first ap-
proach, both on question and question answers.

This first approach would transform the
domain and create specialisations of each

question and question answer. For in-
stance, creating MultipleChoiceQuestion and
MultipleChoiceQuestionAnswer, as shown in
fig. 2(a) and fig. 2(b) respectively. This method was
a straight forward approach. However, it resulted in
some code complexity as it would depend on multiple
casts spread throughout the code, which would make
the code very error-prone if the correct validation were
not made.

(a) Question transformation (b) QuestionAnswer
transformation

Figure 2: Domain transformation of Question and QuestionAnswer
using inheritance

Following the evaluation of this first approach, it was
decided to proceed in a different direction. Rather than
questions being a specialisation of an abstract ques-
tion, questions would contain question details (same
logic for the answers), resulting in favouring compo-
sition over inheritance [8]. In this scenario, ques-
tions would lose all connections and information spe-
cific question type data and all that information would
remain the responsibility of question details. As por-
trayed in the schema in figs. 3(a) and 3(b), we can see
the creation of the question details and the specifica-
tion for each question type, in this case, only multiple
choice.

(a) Question transformation (b) QuestionAnswer
transformation

Figure 3: Domain transformation of Question and QuestionAnswer
using composition

Note that, all these transformations will incur in the
creation of more entities. This might impact perfor-
mance, on the section 6 the solution is put to the test
to examine if the solution requirements still hold stable.

Following the main domain transformations per-
formed, it was necessary to conclude all the services,
Data Transfer Object (DTO) and tests that depended
on the domain to work. All these transformations rely
heavily on abstract classes that serve as templates to
the specific implementations.

During this stage, Frontend (FE) suffered only small
changes. DTOs are simple objects that usually do not
contain any business logic. The only logic present
is storage, retrieval, serialisation and deserialisation
of its data. The serialisation and deserialisation are
used to transfer information over the web. That being

3



said, the DTOs’ serialisation and deserialisation mech-
anisms were updated. To all relevant DTO classes was
added a new field, the type, which maps to a specific
question type. FE’s code was updated to support new
DTOs. Some other less relevant changes to FE were
done to improve its code and prepare it for a more mod-
ular structure used afterwards to insert the new ques-
tion types (see ??). For example, one of the changes
was the addition of QuestionHelpers that manages
the deserialisation on the FE side. The major differ-
ence, comparing the old with the new model, is the ad-
dition of the questionDetailsDto and respective type.

Finally, with the domain changes, it was also neces-
sary to consider the database data’s preservation. As
part of this task, it was created migration scripts that
would ensure that all old database data would be pre-
served in the new architecture.

These changes summed up toward a transmutation
of the code to provide a flexible and simple to use im-
plementation of question types. These transformations
were the initial alignments into creating a flexible ar-
chitecture that results in a low development cost of
adding new types of question. With the development
of sec:qqt this requirement is concretised.

5. Code Question Types
Following our domain model’s transformation, we were
ready to introduce programming code questions that
would reflect part of the exercises done in exams and
class. Revisiting the requirements, there needs to be
a good User Interface (UI) — the new UI needed to
accommodate both an intuitive and straightforward in-
terface for the teachers and students.

5.1. Understanding the exam code questions
The initial concern was to focus on the student side of
the question. That UI is very relevant to understand
what kind of data structure would be required for con-
structing code questions. Figure 4 presents an exam-
ple of the code belonging to an exam question. Here
the student would need to identify which lines were
problematic and also give a solution for them. These
are the kind of problems that would require said con-
version to the quiz question counterpart.

Figure 4: Sample exam question, with answers

Before starting to think technically on the solution

to be implemented in QT, the first thing is to iden-
tify and understand some of these types of questions’
high-level possibilities. It is essential to understand
what would be relevant for the quiz scenario and how
it reflects what teachers are doing in the classes ex-
ams. Conceptually speaking the enumeration below,
presents some question possibilities that could mimic
the different exam questions. The enumeration below
is ordered by complexity and describes both the possi-
ble problem variations and their difficulties.

1. Question - Find bug per line
Description: Given a snippet of code identity, the lines
where problems might occur. This question would focus
on identifying the problem, a more complex interaction
like the exams, where the problem is corrected, can with
automatic evaluation, be accomplished in question type
4.
Evaluation: Easily accomplished by comparing if the
selected lines match the expected correct lines.
Scoring:

• All correct give full marks or something incorrect
gives nothing.

• Partial punctuation, each correct line gives a point,
each incorrect removes or does not provide a
point.

2. Question - Fill in the blanks (Multiple Choice)
Description: A quiz question with a code snippet
where students use a dropdown to select the correct
piece of code that corrects the snippet.
Evaluation: Easily accomplished by comparing if the se-
lected option for each dropdown is the correct one.
Scoring:

• All correct give full marks or something incorrect
gives nothing.

• Partial punctuation, each correct option gives a
point, each incorrect removes or does not provide
a point.

3. Question - Fill in the blanks (Open Answer)
Description: A quiz question similar to the previous
one. The main difference is that the evaluated person
will have to write the code instead of selecting it from
a dropdown. The code to be written could be a simple
word or a full line, should not be more than that.
Evaluation: Here, the situation is more complicated
than the previous one. Can be as simple as a compari-
son (Expected ”int” got ”int”), it can be a regex compar-
ison, or in more complex scenarios would be required
to perform full code analysis, with dynamic and static
analysis of the code. This last option makes this ques-
tion type more complex and should not be considered
as the question types 4 or 5 are more interesting for
that scenarios.
Scoring:

• All correct give full marks or something incorrect
gives nothing.

• Partial punctuation, each correct option gives a
point, each incorrect removes or does not provide
a point.

• Might be limited to the correction method.

4. Question - Code ”review”
Description: In a code review question takes inspira-
tion in the exam questions where the students need to

4



identify problems in code and fix it. The idea of this
question is being like question 1 where student iden-
tify the problem per line, but here also need to fix it by
changing the code.
Evaluation: To evaluate this question, there are two
levels: the first and simpler one is if the identified lines
are correct; the second is if the correction done does
what is expected. To perform the second evaluation, a
specialised infrastructure must run the code and test it
in a sandbox environment. It will also be a significantly
more complex evaluation than the previous since a bat-
tery of tests needs to be created for each question.
Scoring:

• Ideally there would be a component for the identi-
fication and another for the correction in the scor-
ing.

• The identification would be similar to question type
1

• The correction part would be a pondered grade of
the automated tests

5. Question - Code challenge
Description: Code challenge would be similar to the
previous question (4), with the difference that the exami-
nee would need to develop the code fully from a problem
statement.
Evaluation: Uses a specialised infrastructure to run the
code and test it in a sandbox environment. Each ques-
tion requires a battery of tests to run for each submis-
sion.
Scoring:

• The scoring depends on the number of existing
tests, similarly to the previous question type (4).

This evaluation and enumeration obtained from
analysing the exam questions and mapping them into
quiz questions are very important in defining the next
steps. After dissecting it, it was decided to explore the
first two questions to understand the actual possibili-
ties.

5.2. Sample implementation of exam code questions
QT had no previous code questions. Before under-
taking the final solution, it was relevant to explore the
problems identified in the last section (see section 5.1).

To ensure that creating and answering programming
questions is intuitive, the solution needs to support
many of the things code editors support. Some of the
expectations where:

• Highlighting support
• Linting support
• Multiple languages support

With these requirements we found CodeMirror[9].
CodeMirror is a versatile and easy to use library to cre-
ate programming code boxes in the browser. It has a
rich programming API that allowed for an interesting
interaction with the code. Another interesting find was
the port of CodeMirror to Vue 5, which simplifies the
usage with the FE framework.

With that in mind, we began experimenting. This ex-
periments allowed a better validation of the selected

5https://github.com/surmon-china/vue-codemirror

questions and tools before integrating with the final so-
lution. Figures 5(a) and 5(b) expose the first attempts
to understand how the students would see the ques-
tions to answer and what would be required domain
wise.

(a) Select lines sample question

(b) Code fill in sample question

Figure 5: First attempts of using CodeMirror to implement question
answer visualization

After experimenting and creating some samples, it
was decided that the Code Fill In would be the most in-
teresting for the first implementation of code questions.

5.3. Backend changes to support code questions
With a good understanding of the code fill in question
type challenges and possibilities, it is possible to start
performing the code changes, starting with the Back-
end (BE).

5.3.1 Domain changes to include code questions

Similarly to what happened with the multiple-choice
questions, it is clear that the programming questions
with the code fill-in have some properties that are just
theirs. For example, these code questions will require
a programming language, a code with slots to be filled,
the options to said slots. Figure 6 portraits the domain
transformations done to allow for these code ques-
tions.

Besides these significant and more noticeable
changes to the domain, it was also necessary to in-
clude a new code fill in QuestionAnswerItem. This do-
main change allows this question type to have its in-
formation logged and enables the system to perform
better under large loads.

At this point, with all domain changes identified, it
was possible to begin the BE side implementation.

5.3.2 New backend classes and other changes

The BE side required new domain classes and respec-
tive DTO, besides that, it is also indispensable to im-
plement all the appropriate methods to handle each
new domain class. The service layer mostly works with
the generic questions, hence not requiring significant

5



(a) New CodeFillInQuestion

(b) New CodeFillInAnswer

Figure 6: Question and QuestionAnswer domain model, after the
introduction code fill in question

changes on that level. The only other implementation
that needs to be done is the export functionality of the
QT application, which allows the data to be exported
to multiple formats. To qualify for a flexible code in-
frastructure, the code base relies heavily on the Visitor
pattern[10]. This pattern provides an excellent flexible
way of exporting our Questions into the multiple for-
mats required by the application.

There are three main packages affected: question,
answer and statement. Statement’s package consists
of classes surrounding the answering of quizzes by
the students. The statements’ domain holds the items
that temporarily keep the answers before saving and
validating its correctness with the answers package.
Question’s package has all the relevant classes to
manage the actual questions. Also, a new question
type was added to the QuestionType class and the
Updator class, a visitor interface used to propagate up-
dates, was refreshed to encompass the new question
type.

Observe that all DTO parents are updated; this hap-
pens because it is necessary to include the serialisa-
tion information for the correct question type and ques-
tion DTO.

5.3.3 Backend changes required to add a new
question

After finishing the BE transformation, it becomes even
clearer the changes required to add new question
types to the BE side. Figure 7 presents a schema
of the developments required to update the BE code.
Note that in the schema, the DTOs and remainder
classes only show inheritance properties. On the pre-
vious schema, this did not happen. This difference
comes from the fact that not all of those changes might
be required. However, all in the schema of fig. 7 are
indeed needed. All other classes just complement
the implementation and ensure that the business logic
works correctly.

Each specific domain needs to be evaluated inde-
pendently, but as the schema suggests the changes

Figure 7: Backend changes required to introduce the new generic
question (named: GenericExample)

to introduce a new code question are quite mechanic
and simple. The complexity depends only on the ques-
tion itself, and which other classes might require. This
schema does not present any tests which are clearly
necessary. Also, as noted before, inside the question
package, there are two additional changes. The first
that actually should be the first one done is adding the
new question type to the QuestionType class, in this
case, would be ”generic example”. The second is the
update of the Updator class, a visitor interface used to
propagate updates.

5.4. Frontend Changes
Considering the BE tested and finished, FE was up
next. As mentioned before, CodeMirror[9] was a vi-
tal part of this solution as it provided all the code edi-
tor functionalities used. As previously stated, the FE
required the following interfaces: teachers’ interface
to manage questions, teachers’ interface to manage
quizzes, and students’ interface to answer and validate
it.

Before starting tackling the actual UI changes in the
FE, it is relevant to prepare it to be updated and create
the essential FE components and models.

5.4.1 Frontend structure update for new question

After the BE being created, it becomes clear the mod-
els that will be required to be created on the FE side.
Following the DTOs built on the BE side, we can start
mapping them into Typescript.

Besides the models, two other structural changes
that should be tackled before adding a new code ques-
tion. Firstly one should update the QuestionHelpers

to prepare the models to be correctly deserialised from
the FE side. Secondly, setup, like done for the multiple-
choice questions section 4, components to be imple-
mented with a shared UI across the platform. The com-
ponents required are:

• Question Visualisation (CodeFillInView.vue) -
Responsible for presenting a question in a read-
only mode. Is also used to present answers given
by the students to the teachers with a simpler UI

6



• Question Creation and Edition
(CodeFillInCreate.vue) - Responsible for
creating or editing a question. This type of
component will then be used for question sub-
mission and teacher question management (see
section 5.4.2)

• Question Answer (CodeFillInAnswer.vue) -
Used by the students to answer the actual
question.

• Question Answer Result
(CodeFillInAnswerResult.vue) - Used by
the students to validate the answer.

If the components are simple enough, they can be con-
densed into less, used across all views. For instance,
the multiple-choice question shares the answer and
answer result components.

With the FE structure setup, we can continue imple-
menting the specific UIs.

5.4.2 Teachers’ interface to manage questions

The first interface developed was the teachers’ inter-
face to manage questions. On this interface, they were
already able to create and manage all the multiple-
choice questions. It was required to extend the cre-
ation to allow for multiple types. This extension was
done by adding a select-box right on the top of the
dialog. Note that the UI differs only on the bottom part
of the dialog. This detail was a concern that existed
throughout the development of the FE that focused on
creating a UI as shareable as possible across all ques-
tion types. Now specifically for the question manage-
ment of the code fill-in question, it was required the
development of two different UIs, one for the creation
and the other for visualisation.

(a) Multiple Choice Question Creation
Example

(b) Code Fill In Question Creation Ex-
ample

Figure 8: New code question creation UI taking multiple question
types into consideration

Firstly the creation/edit one, fig. 9(a) depicts the new
UI. On (1), we can see the language selection box;
this will determine the programming language we want
our code to be. On (2), we have our code editor, which

will be highlighted with the correct programming lan-
guage. (3) shows the button that allows fill in slots to
be created. Basically, one selects the text they want to
convert in a dropdown, and a new slot is created im-
mediately, having as correct answer the text that was
already there. Finally, (4) presents the answer spots
which can be added incorrect options to give to our
learners to test them. Note that fig. 9(b) shows the edit
UI as it can be seen it is exactly the same as the create
one with the distinction that some options are ”locked”
and cannot be changed.

(a) Create UI with some highlights.

(b) Edit UI

(c) View UI

Figure 9: Code Fill In Question Management

Secondly, the visualization one, fig. 9(c) depicts the
new view code question UI. This interface is a read-
only interface, where the teacher can see the ques-
tion and the options like what the student will then see.
The code editor is once again using CodeMirror for the
highlighting.

All of these UIs for question management are used
in multiple places throughout the FE, being that the
management page the most relevant. The com-
ponents used in the question management are the
CodeFillInCreate.vue and the CodeFillInView.vue.
The first for edition, duplication and creation and the
second for visualisation of the question.

5.4.3 Students’ interface to answer and validate it

It was necessary to add the question to the students’
quiz visualisation UI. To ensure that the User Expe-
rience (UX) would be similar to what it was already
presented to the students, the code fil-in interface was
implemented in the red box (see fig. 10), replacing

7



what would be the options for a multiple-choice ques-
tion. This choice allows for a consistent approach
into adding new question types in the future, and
only this red-box needs to be implemented for each
question. Figure 11 presents the UIs implemented
for this new question type. This red-box basically
represents the answer (CodeFillInAnswer.vue) and
answer response (CodeFillInAnswerResponse.vue)
components.

Figure 10: Multiple choice question, with the
MultipleChoiceAnswer.vue component identified in red

The final result of this implementation is depicted in
fig. 11. Note that it draws inspiration from the initial
samples done (see section 5.2 sub-section). This UI
allows for an intuitive interaction by the learners.

(a) Code fill in question
example

(b) Code fill in answer ex-
ample

Figure 11: Code fill in question type used in quiz

5.4.4 Teachers’ interface to manage quizzes

The interface to manage the quizzes was straight-
forward up to a certain point. Firstly, quizzes’ cre-
ation and management deal mostly with the Question
domain concept rather than specific questions types.
This means that whenever a new question type is de-
vised, it can be easily added to a quiz without any FE
changes. However, some features would not work im-
mediately—namely, the visualisation of the question in
a read-only mode and the student’s visualisation an-
swer to the question. Both can be solved by ensuring
that the question Vue.js specific component is being
used. The visualisation component was created when
the section 5.4.2 was developed. The component used
here is the CodeFillInView.vue.

Figure 12 portraits the multiple interfaces used to
manage quiz questions and how it is affected by this
code question. Figure 12(a) shows how all questions
can be viewed before creating the quiz. Whilst, Fig-
ures 12(b) and 12(c) present the UI for quiz answer re-
sults. Note that before, only the first one existed since
multiple choices are direct, either the student answers
with the correct key or not. However, with the addition
of code fill-in question, this becomes more complex.
On the first screen (fig. 12(b)) the student will be able to
see a high-level overview of the students answer, and
see how many of the fill-in spots they have answered
correctly. When pressing the result, a new dialog will
appear. This dialog(fig. 12(c)) allows the teacher to ex-
plore each of the errors shown in more detail.

(a) Quiz creation and
question visualisation

(b) Quiz answer results

(c) Quiz answer details

Figure 12: Code fill in question type used in quiz

5.4.5 Frontend changes required to add a new
question

As noted from the previous sub-chapters, the FE code
became very modular and easy to extend up to a cer-
tain degree. The complexity of extension lies with the
complexity of the question UI. Figure 13 presents a
schema of the steps and code required to update the
FE code, demonstrating how straightforward it is to do
it. As we can see, and reinforced by the previous sec-
tions, little additions are to be done.

Figure 13: Frontend changes required to introduce the new generic
question (named: GenericEx)

Once again, the schema just displays the required
changes. Any tricky question will probably require
more classes or components to allow code re-usage.

6. Evaluation
With the requirements in mind, it is crucial to stop and
critically analyse the work done. The following chap-
ters focuses on just that.

6.1. Performance Evaluation
With the transformations done to the domain, it is ex-
pected that there might exist some impact on perfor-
mance. However, if strongly affected, this point can
harm the current solution, making it nearly unusable
or at best very unstable. To ensure that the perfor-
mance changes are sustainable multiple tests were
run against the two multiple implementation versions,
before and after the significant domain changes. On
one end, we have the original implementation where
only multiple-choice existed, and the domain was more
straightforward, having Questions and Answers as the

8



simple domain. On the other end, we have the new
domain implementation which contains the existent
multiple-choice questions but now as QuestionsDetails

and AnswersDetails of Questions and Answers respectively.
To perform these tests straightforwardly and system-

atically, the tests were set up considering the following
conditions throughout each iteration of each run:

• All tests ran on the same machine.
• The tests were all created from existing/modified

scripts used previously to analyse the code per-
formance.

• The tests mentioned above are executed using
JMeter6 (version 5.2.1).

• Each test starts from the same starting point; an
empty database, with the tables created by the
Spring migrations.

• Besides that all demo courses required in the tests
are created.

The tests ran where the following:

• Question Creation - consists of login in as a
teacher or multiple teachers of a given course and
creating a given number of questions.

– Fifty teachers to fifty questions (with tear-
down)

– Fifty teachers to fifty questions (without tear-
down)

• Quiz interaction - consists of login as a teacher
and creating a given number of questions for a
given quiz and the respective quiz. Then a sup-
plied number of students will log in and answer
said quiz. After they all submit the grade calcula-
tion will be performed. This test exposes if there
are any particular issues with the main functional-
ity of QT, the quizzes.

– 100 students answer 20 questions
– 300 students answer 20 questions
– 300 students answer 40 questions

The results of the tests conclusively showed that
when there where variations were relatively small. Ta-
bles 1 and 2 present the data of part of the last test
executed, which was the most extensive and repre-
sents well the results obtained across all trials. As we
can see, there is a small (100 milliseconds) slowness
on the new implementation. This result was actually
shifted in other tests. The third step, which considers
all the answers provided, currently in a logged state,
and saves them properly in the database, showed quite
problematic results, both for the new and old solution.
However, this result showed worse performance in the
new solution, which was expected since the number of
entities required to maintain this new solution is larger
than the old hence more data needs to be created.
This operation is mostly a management operation usu-
ally done at night; hence, the existing platform’s impact
is diminished. That being said, this could become a

6https://jmeter.apache.org/

Table 1: Results: Students answering the quiz simulation (40 Ques-
tions + 300 Students) - Original implementation

Label Samples Average Median Min Max Throughput

Login as student 300 12610 11394 1773 43693 6,62530
Get quizzes available 300 14245 12862 2674 46272 5,62746
Start quiz 300 10780 9426 3243 34391 6,17996
Submit answer 12000 950 523 10 23907 209,87460
Conclude quiz 300 370 295 12 1336 46,27487
TOTAL 13200 1728 548 10 46272 167,49994

Table 2: Results: Students answering the quiz simulation (40 Ques-
tions + 300 Students) - Multiple Question Types implementation

Label Samples Average Median Min Max Throughput

Login as student 300 12757 11294 2256 45572 6,35055
Get quizzes available 300 15180 13762 2677 52026 5,02378
Start quiz 300 13444 12192 3383 40227 5,51005
Submit answer 12000 1024 548 10 31742 197,35544
Conclude quiz 300 357 269 11 1416 54,91488
TOTAL 13200 1879 569 10 52026 155,10981

problem in the future and can become more evident
with the increase of users, should be developed a so-
lution that tries to optimise this situation.

6.2. Flexibility Evaluation
One of the requirements previously stated (see sec-
tion 3) was to ensure a flexible architecture. On other
words, with the addition of this new code question and
domain reconfiguration, the code should result in a low
development cost when adding new types of problems.

Considering the steps to add a new question, as pro-
posed in the solution, both for the FE (section 5.4.5)
and the BE (section 5.3.3), it is relatively straightfor-
ward to accomplish it. To put the requirements to the
test, and to ensure that the new solution provides a low
development cost when adding new types of problems.

This test was set up considering the following condi-
tions:

• It will be implemented a new code question. After
considering the possibilities, it was decided that
an ordering code question would be implemented,
like the Parsons Problem[11].

• The author did the developments.
• Each development period was timed to grasp the

time taken in each part of the development.
• It will be analysed Lines Of Code (LOC), altered

classes, as well as newly created classes.

With the new implementation finished, it was time to
assess it. The BE changes updated 28 files(16 cre-
ations and 12 modifications), 977 insertions lines of
code, 22 deletions lines of code. The developments
took 2 hours, 1h35 for the initial development, and
the remainder of the time spent with fixes while de-
veloping the FE. The FE changes updated 22 files(14
creations and 8 modifications), 815 insertions lines of
code, 6 deletions lines of code. The developments took
7 hours, which is considerably more than the BE part
and can be easily explained by the fact that this devel-
opment requires more creative sides.

Although it might seem lots of changes, the up-
dates, for instance, are very simple in all files, and
the new creations are mostly implementing boilerplate
code. Looking at the data, both files changed and time
taken, this solution is up to the challenge of adding new
questions with ease and low development effort. The

9



only problems that might arise are when more com-
plex questions are selected to be inserted. Similarly
to what happened with this question, there might have
more complex parts; this case was the FE.

7. Conclusions
Throughout the years, researchers have been explor-
ing the best tools and methodologies to ensure that,
as a teacher, the message passes down successfully.
Even though education is sometimes challenging, it
can be simplified through the usage of the correct tools.
More precisely, programming education has been rela-
tively challenging, leading researchers to create prac-
tical tools that can help in this effort. Throughout the
research explored during this thesis, we can see multi-
ple engaging devices.

This work focusses on learning from related work
in this and parallel fields of study, and with that un-
derstanding help Quizzes Tutor grow. Using the best
practices of design patterns and DDD to continuously
evolve the platform. One of the more significant contri-
butions of this work was the reconstruction of the do-
main (aborded in section 4). This transformation allows
for the platform to continue its growth with ease. It is
important to note that there where some hindered per-
formance in a particular test. Still, it is not enough to
discredit the current solution.

This thesis’s main focus was unquestionably adding
a new programming code question to the Quizzes Tutor
platform. During this work, there was an evaluation of
multiple systems. Still, even more, relevant was some
analysis already done on a couple of question types
that could eventually be added, programming related
or not. This analysis covered question goals, question
evaluation, describing some of the challenges of imple-
menting it. This analysis is, without a doubt, relevant to
be explored in future work.

The most meaningful contribution of this thesis was
the addition of a new programming code question, the
Fill-In Question. This code question consists of having
a snippet of code with blank spaces that need to be
filled. This question arose from the previous evaluation
of existing solutions and exam questions. The addition
of this question served two purposes—the new ques-
tion type and a system that can be easily extended with
new types.

In regards to evaluation, there was a deficit that was
not filled. One of the shortcomings of this work is not
being tested with live users and not gathering informa-
tion from users in a structured manner. These feed-
backs were partially obtained during the development,
but never in a structured way, making it useless for
data analysis and evaluation. This lack of analysis is,
without a doubt, the biggest shortcoming of this work.
Hopefully could be fixed shortly, and make use of those
inputs to continue to develop the application.

Quizzes Tutor, grew a lot during this last year. This
work showcases part of those developments. Quizzes
Tutor is becoming a powerful E-Learning tool, com-
bining the question varieties with engagement mech-
anisms, like tournaments. This work will undoubtedly

encourage even more developments, and help achieve
more use cases. Education is in constant evolution,
and Quizzes Tutor aims to accompany said evolution
as a powerful tool companion to education.

References
[1] W. Horton, E-learning by design. John Wiley &

Sons, 2011.

[2] A. M. Bodzin and W. M. Cates, “Enhancing Pre-
service Teachers’ Understanding of Web-based
Scientific Inquiry,” Journal of Science Teacher Ed-
ucation, vol. 14, no. 4, pp. 237–257, 2003.

[3] M. I. Santally and J. Raverdy, “The Master’s Pro-
gram in Computer-Mediated Computer Communi-
cations: A Comparative Study of Two Cohorts of
Students,” Educational Technology Research and
Development, vol. 54, no. 3, pp. 312–326, 2006.

[4] “Quizzes Tutor Website.” [Online]. Available:
https://quizzes-tutor.tecnico.ulisboa.pt/

[5] “Quizzes Tutor Source Code.” [Online]. Available:
https://github.com/socialsoftware/quizzes-tutor

[6] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä, “Review of recent systems for auto-
matic assessment of programming assignments,”
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research,
Koli Calling’10, pp. 86–93, 2010.

[7] E. Evans, Domain-Driven Design: Tacking Com-
plexity In the Heart of Software. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[8] E. Freeman, E. Freeman, B. Bates, and K. Sierra,
Head First Design Patterns. O’ Reilly amp; As-
sociates, Inc., 2004.

[9] “CodeMirror.” [Online]. Available:
https://codemirror.net/

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides, Design Patterns: Elements of Reusable
Object-Oriented Software. USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[11] D. Parsons and P. Haden, “Parson’s
programming puzzles: A fun and effec-
tive learning tool for first programming
courses,” Tech. Rep., 2006. [Online]. Available:
https://www.researchgate.net/publication/262160581

10


